#붙임1: 교육과정을 벗어난 것으로 판정된 근거 (요약)

※ 학교 교육과정의 범위와 수준을 벗어난 출제는 크게 세 가지로 나눌 수 있습니다.

유형 ①	교육과정 성취기준 또는 평가기준에 명시된 사항을 벗어난 경우
유형 ②	교육과정 성취기준 또는 평가기준에 명시되지 않은 내용을 출제한 경우
유형 ③	1학년 2학기 단원 또는 상위 학년 내용을 출제한 경우

학교	문항 번호	위 ①	반 유 ②	형 ③	교육과정을 벗어난 것으로 판정한 근거	미준수 비율
2	단답형 2		•		◆ ω 의 성질 $x^3 = 1$ 의 한 허근 ω 의 성질을 활용한 문제로 성취기준에 명시되지 않은 내용과 학습 요소에 없는 기호를 사용함.	15.00/
A 고등학교	서술형 2			•	 ◆ 좌표축의 변환 x 축에서 t축으로 좌표축을 변환하는 것은 대학 교육과정임. 	15.8% (3/19)
	서술형 4		•		◆ 두 원의 위치관계 두 원의 위치관계는 교육과정에서 삭제된 내용임.	
	선다형 4		•		◆ 산술, 기하평균 산술평균과 기하평균을 이용한 최대, 최소 문제는 절대부등식의 성취기준에 명시되지 않는 내용임.	
	선다형 11		•		• ω 의 성질 $x^3 = -1$ 의 한 허근 ω 의 성질을 활용한 문제로 성취기준에 명시되지 않은 내용과 학습 요소에 없는 기호를 사용함.	45.40
B 고등학교	선다형 17			•	$ullet$ $f_1(x).f_2(x)$ 의 사용 $f_1(x).f_2(x)$ 는 대학과정의 함수열 기호 표현임 $f(3-x)=f(3+x)$ 는 대학교육 과정의 함수방정식임.	17.4% (3/23)
	서술형 2			•	• 삼차방정식의 근과 계수와의 성질 삼차방정식의 근과 계수의 관계는 대학 교육과정임.	

학교	문항 번호	위반 ① (유형 2) 3	교육과정을 벗어난 것으로 판정한 근거	미준수 비율
	선다형 2			• $ω$ 의 성질 $x^3 = 1$ 의 한 허근 $ω$ 의 성질을 활용한 문제로 성취기준에 명	
	건역 중 건			시되지 않은 내용과 학습 요소에 없는 기호를 사용함.	
	선다형 10		•	◆ A _n , A _{n+1} 의 사용 아래 첨자에 <i>n</i> 이 들어가는 표현은 고등학교 2학년에 배우는	
				수학1의 수열에서 처음으로 사용함.	
				◆ 합성함수의 최대,최소 합성함수를 치환하여 이차함수의 최대, 최소를 구하는 문제	
	선다형 12		•	로서 합성함수는 2학기에 배우는 내용이며 좌표축의 변환은	
C				대학 교육과정임. • 판별식을 활용한 복잡한 방정식 문제	14.0%
고등학교	선다형 14	•		교육과정 평가 방법 및 유의사항에는 판별식을 활용한 복잡한	(7/20)
	2 10			방정식 문제는 다루지 않는다고 되어 있음. 특히 중근 조건으로 식을 세우면 a,b 좌표계가 설정되어 교육과정을 벗어남	
	선다형 15			 파포스의 중선정리 	
	29 8 10			파포스의 중선정리는 교육과정을 벗어나 대학교육 과정임. ◆ 복잡한 근과 계수의 관계	
	선다형 16	•		도형의 방정식은 계산이 복잡한 문제는 다루지 않도록 되어	
				있는데 근과 계수의 관계를 활용한 매우 복잡한 문제임. ◆ 두 원의 교점을 지나는 직선의 방정식	
	서술형 2		•	두 원의 교점을 지나는 직선의 방정식은 교육과정에 명시되	
				지 않은 내용임. • 특정한 직선에 대한 대칭이동	
	선다형 1	•		y = -2x + 1에 대하여 대칭이동을 묻는 문제로 교육과정 성	
	 선다형 2			취기준에 명시된 사항을 벗어난 문제임. ◆ 아폴로니오스의 원	
	2 10 2			아폴로니오스의 원은 교육과정에 없는 대학교육 과정임. ◆ 평면에서 세 직선의 위치 관계	
	선다형 4	•	•	평면에서 세 직선의 위치관계를 통해 영역을 나누는(분할)문	
				제로서 교육과정에서 다루지 않는 내용임. ◆ 복소수의 극형식 문제	
	선다형 8		•	복소수의 극형식 문제에서 회전이동을 하면 쉽게 해결되는 문제로서 대학교육 과정임	
	11-1-1 0	_		◆ 복잡한 근과 계수의 관계, 부정방정식	
	선다형 9			근과 계수의 관계를 이용해야 하는 복잡한 문제는 교육과정 성취기준에 명시된 내용을 벗어남.	
D 고등학교	선다형 11			◆ 근의 분리	50.0% (10/20)
207	선무성 11			이차방정식과 부등식의 내용 중 근의 분리에 해당하는 내용 으로 교육과정에 명시되지 않는 내용임.	(10, 20)
	선다형 15		•	◆ 피타고라스 음계 수열의 귀납적 정의에 해당하는 문제로 대학 교육과정임.	
				◆ 각의 이등분선의 비율에 관한 성질	
	서술형 1	•	•	각의 이등분선의 비율에 관한 성질은 교육과정에 명시 되지 않는 내용임.	
				◆ 음수의 제곱근의 성질	
	서술형 4		•	복소수의 사칙연산과 음수의 제곱근의 성질은 교육과정에 명시 되지 않는 내용임.	
				◆ 복잡한 근과 계수의 관계, 부정방정식	
	서술형 6	•		근과 계수와의 관계가 복잡하고 부정방정식을 이용해야 하는데 이는 교육과정 성취기준에 명시된 내용을	
				벗어남.	

학교	문항 번호	위반유		교육과정을 벗어난 것으로 판정한 근거	미준수	
•	202	1 2	3	◆ 일반 직선에 대한 대칭이동	비율	
				교육과정의 대칭이동은 x 축, y 축, 원점, $y=x$ 에 대한 대칭이		
	선다형 10	•		동만 다루지만 이 문항은 일반 직선 $y=mx+n$ 에 대한 대칭이		
				동을 평가하고 있음.		
				◆ 미지수가 4개인 연립일차부등식		
	선다형 20	•		연립일차부등식은 미지수가 1개인 것을 다루는 것이 교육과정인		
Е				데, 이 문항은 미지수가 총 4개가 있음.	16.7%	
고등학교				◆ y =-x에 대한 대칭이동	(4/24)	
	선다형 21	•		교육과정의 대칭이동은 x 축, y 축, 원점, $y=x$ 에 대한 대칭이		
				동만 다루지만 이 문항은 직선 $y=-x$ 에 대한 대칭이동을 평가		
				하고 있음.		
	서답형 2			◆ 굴절반사 그저바시에 대한 이기로 이케케아 케거 기능한 무게이데 그저봐.		
	시합영 4			굴절반사에 대한 원리를 이해해야 해결 가능한 문제인데 굴절반 사는 교육과정에 없는 내용임.		
	선다형 6		•	• 파포스의 중선정리 파포스의 중선정리는 교육과정을 벗어나 대학 교육과정임.		
				퍼포프의 중산정니는 교육의정을 것이다 대역 교육의정함.		
	선다형 11			◆ 아폴로니오스의 원		
	선덕성 11			아폴로니오스의 원은 자취 문제로 대학 교육과정임.		
				◆ 원과 비례		
F	선다형 13	•		원의 할선 사이의 길이의 비를 이용한 문제로서 교육과정에서	23.8%	
고등학교				삭제된 내용임.	(5/21)	
	선다형 14	•				
	서수형 ?					
	기타하기					
F 고등학교	선다형 13 선다형 14 서술형 3	•		◆ 원과 비례 원의 할선 사이의 길이의 비를 이용한 문제로서 교육과정에서	23.8% (5/21)	

학교	문항 번호	위 ①	반 유형 ②	경	교육과정을 벗어난 것으로 판정한 근거	미준수 비율	
	-				◆ 세 점의 좌표를 이용해 삼각형의 넓이		
	선다형 1	선다형 1		•	사선 공식을 이용하여 삼각형의 넓이를 구하는 문제로 대학교육		
					과정임. ◆ 함수와 관련하여 지나치게 복잡한 활용문제		
					평가방법 및 유의사항에 함수와 관련하여 지나치게 복잡한		
	선다형 2		•		활용문제는 다루지 않기로 했는데 이 문제는 외분을 이용해		
					지나치게 복잡한 계산 과정을 묻고 있음.		
G					◆ 연립이차방정식	20.8%	
고등학교	ਮਾਰੀ ਲੀ ਵ				교수학습방법 및 유의사항에 보면 미지수가 2개인	(5/24)	
120 71	선다형 5	•			연립이차방정식은 이차식이 간단히 인수분해가 되는 경우만	(5/ 24)	
					다룬다고 했는데 복잡한 인수분해를 출제했음.		
					◆ 정사각형 넓이 6 등분		
	선다형 12		•		정사각형의 넓이의 6등분을 공식화시키는 것은 교육과정에 없는		
					내용임.		
	선다형 14	성다.형 1/			◆ 평면에서 세 직선의 위치 관계		
					평면에서 세 직선의 위치관계는 교육과정에 없는 내용임,		
					◆ 미지수가 2개인 연립이차방정식		
	선다형 1				교수학습방법 및 유의사항에 보면 미지수가 2개인 연립이차방정		
	선덕경 1				식은 이차식이 간단히 인수분해가 되는 경우만 다룬다고 했는데		
					복잡한 인수분해를 다루었음.		
	선다형 4		•		◆ 근의 분리		
					이차방정식의 근의 위치 문제는 교육과정에서 삭제되었음.		
	선다형 6			•	• 파포스의 중선정리		
Н	100				파포스의 중선정리는 교육과정을 벗어나 대학 교육과정임.	31.6%	
고등학교	선다형 10		•		◆ f(x) = 0 함수방정식	(6/19)	
1 - 0 - 1 -	10 10				f(x) = 0은 교육과정 성취기준에 명시되지 않는 내용임.	(0/10)	
					• $f(-y+3, -x+1) = 0$, $y = -x$ 대칭		
	선다형 12		•		음함수의 표현으로 평행이동과 대칭이동을 복합적으로 사용하여		
	L 10 12				합성변환을 유도하고 있으며 $y=-x$ 대칭을 기반으로 하고		
					이은.		
	11 2 =1 0				◆ 각의 이등분선의 비율에 관한 성질		
	서술형 2		•		각의 이등분선의 비율에 관한 성질은 교육과정에 명시 되지		
					않는 내용임.		

학교	문항 번호	위 ①	반 유 ②	형 ③	교육과정을 벗어난 것으로 판정한 근거	미준수 비율
	선다형 18			•	◆ 파포스의 정리 파포스의 중선정리는 교육과정을 벗어나 대학 교육과정임.	
	선다형 19		•		 ◆ y = -x에 대한 대칭이동 교육과정의 대칭이동은 x축, y축, 원점, y=x에 대한 대칭이동만 다루지만 이 문항은 직선 y=-x에 대한 대칭이동을 평가하고 있음. 	
I 고등학교	선다형 21		•		◆ $n(2k, 2k+4)$ 의 표현 $n(a,b)$ 의 표현은 교육과정에서 다루고 있지 않음.	21.7% (5/23)
	선다형 22		•		 ◆ y = -x + 4에 대한 대칭이동 교육과정의 대칭이동은 x축, y축, 원점, y=x에 대한 대칭이동만 다루지만 이 문항은 직선 y=-x+4에 대한 대칭이동을 평가하고 있음. 	
	선다형 23		•		 ◆ f(-x, y-2) = 0 교육과정의 대칭이동은 x축, y축, 원점, y=x에 대한 대칭이 동만 다루지만 이 문항은 그 범위를 넘어서고 있음. 	
	선다형 17		•		 ◆ y = -x에 대한 대칭이동 교육과정의 대칭이동은 x축, y축, 원점, y=x에 대한 대칭이동만 다루지만 이 문항은 직선 y=-x에 대한 대칭이동을 평가하고 있음. 	
	선다형 18			•	◆ 회전이동 회전이동은 교육과정에서 다루지 있지 않으며 복잡하고 생소한 사차함수의 대칭이동은 교육과정을 벗어나 대학 교육과정임.	
J 고등학교	선다형 19		•		◆ 절댓값이 있는 도형의 이동 절댓값이 포함된 도형의 방정식은 교육과정에 명시되어 있지 않음.	21.7% (5/23)
	선다형 21		•		◆ 두 원의 위치관계 두 원의 위치관계를 교육과정에 없는 내용이며 공통내접선은 교육과정에서 삭제되었음.	
	선다형 22		•		 ★ x+y-1=0 대칭이동 교육과정의 대칭이동은 x축, y축, 원점, y=x에 대한 대칭이동만 다루지만 이 문항은 직선 x+y-1=0에 대한 대칭이동을 평가함. 	

■ 교육과정 벗어난 근거 (학교별 상세 자료)

1. A 고등학교

■ A 고등학교 - 단답형 2번 문항

※ 문항 및 문항 분석

단답형 2번 문항 (위반 유형 ②)	문항 분석
삼차방정식 $x^3 = 1$ 의 한 허근을 ω 라고 하자.	$\bullet \omega$ 의 성질 $x^3 = 1$ 의 한 허근 ω 의 성질을 활용한 문제로
n 이 100이하의 자연수일 때, $(-\omega-1)^{2n} \times \omega^{4n}$ 의 값이 실수가 되도록 하는 n 의 개수를 구하시오. [5점]	성취기준에 명시되지 않은 내용과 학습 요소 에 없는 기호를 사용함.

※ 공교육정상화법 근거

공교육정상화법의 교과별 적용을 위한 안내(수학) - 한국교육과정평가원

다. 평가 시 유의 사항

- (1) 평가 문항은 교육과정을 근거로 출제해야 함
 - 2015 개정 수학과 교육과정(교육부 고시 제2020-236호 [별책8])의 성격, 목표, 내용 체계 및 성취 기준, 교수·학습 및 평가의 방향을 준수하여야 합니다.
 - 교과서나 지도서의 내용도 교육과정 내의 내용인지 면밀히 확인하여야 합니다. 특히 교과서의 "탐구하기", "창의 융합 코너", "사고력 키우기" 등의 특별 코너 및 읽기 자료 등에 실려 있는 내용은 교육과정의 범위를 벗어나는 경우가 있으므로 주의해야 합니다. EBS를 포함한 시중의 교재나 교과서 출판사에서 제공하는 자료 등을 평가에 활용하는 경우에는 더욱 주의해야 합니다.

■ A 고등학교 - 서술형 2번 문항

서술형 2번 문항 (위반 유형 ②)	문항 분석
x 에 대한 이차함수 $y=-x^2-2tx-2t^2+6t-1$ 의 최댓값을 $f(t)$ 라 하자. $-1\le t\le 5$ 에서 함수 $f(t)$ 의 최댓값과 최솟값을 각각 구하시오 (단, x 는 모든 실수이다.) [7점]	• 좌표축의 변환 주어진 이차함수의 최댓값을 $f(t)$ 라 할 때, $f(t)$ 의 최댓값과 최솟값을 구하려면 x 축을 t 축으로 좌표축을 변환해야 하는데 이것은 대학 교육과정임.

■ A 고등학교 - 서술형 4번 문항

※ 문항 및 문항 분석

서술형 4번 문항 (위반 유형 ②)	문항 분석
원점이 아닌 y 축 위에 있는 점 A 가 중심이고 반지름의 길이가 $\sqrt{10}$ 인 원을 C_1 , 점 A 를 $y=x$ 에 대하여 대칭이동한 점 B 가 중심이고 반지름의 길이가 2 인 원을 C_2 라 하자. 두 원 C_1 , C_2 의 교점을 각각 P , Q 라 하고 선분 AB 와 선분 PQ 의 교점을 H 라 할 때 $\frac{\overline{BH}}{\overline{AH}} = \frac{5}{11}$ 이다. 두 원 C_1 , C_2 의 중심 A , B 의 좌표를 구하시오. (단, 점 A 의 y 좌표는 양수이고, $\overline{OA} > \sqrt{3}$ 이다.) [9점]	• 두 원의 위치관계 두 원의 위치관계는 교육과정에서 삭제된 내용임.

※ 교육과정 성취기준

2015 개정 교육과정

③ 원의 방정식

[10수학02-06] 원의 방정식을 구할 수 있다.

[10수학02-07] 좌표평면에서 원과 직선의 위치 관계를 이해한다.

2. B 고등학교

■ B 고등학교 - 선다형 4번 문항

※ 문항 및 문항 분석

선다형 4번 문항 (위반 유형 ②)	문항 분석
$\frac{x}{a} + \frac{y}{b} = 1$ 이 점 $(2,3)$ 을 지날 때. ab 의 최솟값은? (단, a, b 는 $a > 0, b > 0$ 인 상수이다.) [3.3점]	◆ 산술, 기하평균 산술평균과 기하평균을 이용한 최대, 최소 문제는 절대부등식의 성취기준에 명시되지 않는 내용임.

■ B 고등학교 - 선다형 11번 문항

※ 문항 및 문항 분석

선다형 11번 문항 (위반 유형 ②)	문항 분석
삼차방정식 $x^3 = -1$ 의 한 허근을 ω 라 할 때, $\overline{\omega} + \overline{\omega}^2 + \overline{\omega}^3 + \dots + \overline{\omega}^n = 0$ 을 만족하는 100 이하의 자연수 n 의 개수는? (단, $\overline{\omega}$ 는 ω 의 켤레복소수이다.) [3.5점]	 ◆ ω의 성질 x³=1의 한 허근 ω의 성질을 활용한 문제로 성취기준에 명시되지 않은 내용과 학습 요소에 없는 기호를 사용함.

※ 공교육정상화법 근거

공교육정상화법의 교과별 적용을 위한 안내(수학) - 한국교육과정평가원

다. 평가 시 유의 사항

- (1) 평가 문항은 교육과정을 근거로 출제해야 함
 - 2015 개정 수학과 교육과정(교육부 고시 제2020-236호 [별책8])의 성격, 목표, 내용 체계 및 성취 기준, 교수·학습 및 평가의 방향을 준수하여야 합니다.
 - 교과서나 지도서의 내용도 교육과정 내의 내용인지 면밀히 확인하여야 합니다. 특히 교과서의 "탐구하기", "창의 융합 코너", "사고력 키우기" 등의 특별 코너 및 읽기 자료 등에 실려 있는 내용은 교육과정의 범위를 벗어나는 경우가 있으므로 주의해야 합니다. EBS를 포함한 시중의 교재나 교과서 출판사에서 제공하는 자료 등을 평가에 활용하는 경우에는 더욱 주의해야 합니다.

■ B 고등학교 - 선다형 17번 문항

※ 문항 및 문항 분석

선다형 17번 문항 (위반 유형 ③)	문항 분석
 17. 다음 조건을 만족하는 이차함수 f(x)를 f₁(x), f₂(x) 라하자. f₁(x), f₂(x) 의 교점의 x좌표를 α, β라 할 때, α² + β² 의 값은? [3.8점] (가) f(3-x)=f(3+x) (나) -2 ≤ x ≤ 5에서 함수 y=f(x)의 최댓값은 13, 최솟값은 -19이다. 	 • f₁(x).f₂(x)의 사용 f₁(x).f₂(x)는 대학과정의 함수열 기호 표현이며 f(3-x)=f(3+x)는 선대칭함수 표현은 함수방정식으로서 대학 교육과정임. 교육과정의 대칭이동은 x축, y축, 원점, y=x 에 대한 대칭이동만 다루고 있음.

■ B 고등학교 - 서술형 2번 문항

※ 문항 및 문항 분석

서술형 2번 문항 (위반 유형 ②)	문항 분석
2. x 에 대한 삼차방정식 $x^3 - (2a-1)x^2 + (b^2 - 2a)x + b^2 = 0$ 이 서로 다른 세 실근을 갖고 세근의 합이 -9 가 되도록 하는 두 실수 a,b 의 값 또는 범위를 구하시오. [8점]	• 삼차방정식의 근과 계수의 성질 삼차방정식의 근과 계수의 관계는 대학 교육과정임.

※ 교육과정 근거

2015 개정 교육과정 교수•학습 자료

• 이차방정식의 근과 계수의 관계를 활용하는 복잡한 문제는 다루지 않는다.

2015 개정 수학과 교육과정에서는 학생들의 학습 부담 경감을 고려해 이차방정식의 근과 계수의 관계는 그 원리를 이해하는 수준에서 다루고 이를 활용하는 문제에서 복잡한 문제는 다루지 않도록 하고 있다.

3. C 고등학교

■ C 고등학교 - 선다형 2번 문항

※ 문항 및 문항 분석

선다형 2번 문항 (위반 유형 ②)	문항 분석
2. 삼차방정식 $x^3=1$ 의 한 허근을 ω 라 할 때, $1+\omega+\omega^2+\omega^3+\cdots+\omega^{2021}$ 의 값은? [3.1점]	 ◆ ω의 성질 x³=1의 한 허근 ω의 성질을 활용한 문제 로 성취기준에 명시되지 않은 내용과 학습 요소에 없는 기호를 사용함.

※ 공교육정상화법 근거

공교육정상화법의 교과별 적용을 위한 안내(수학) - 한국교육과정평가원

다. 평가 시 유의 사항

- (1) 평가 문항은 교육과정을 근거로 출제해야 함
 - 2015 개정 수학과 교육과정(교육부 고시 제2020-236호 [별책8])의 성격, 목표, 내용 체계 및 성취 기준, 교수·학습 및 평가의 방향을 준수하여야 합니다.
 - 교과서나 지도서의 내용도 교육과정 내의 내용인지 면밀히 확인하여야 합니다. 특히 교과서의 "탐구하기", "창의 융합 코너", "사고력 키우기" 등의 특별 코너 및 읽기 자료 등에 실려 있는 내용은 교육과정의 범위를 벗어나는 경우가 있으므로 주의해야 합니다. EBS를 포함한 시중의 교재나 교과서 출판사에서 제공하는 자료 등을 평가에 활용하는 경우에는 더욱 주의해야 합니다.

■ C 고등학교 - 선다형 10번 문항

※ 문항 및 문항 분석

선다형 10번 문항 (위반 유형 ③) 10. 좌표평면에서 자연수 n에 대하여 점 A_n 과 점 B_n 을 다음과 같이 정하자. (가) $A_1(1,1)$ (나) 점 B_n 은 점 A_n 을 직선 y=x에 대하여 대칭이동시킨 점이다. (다) n이 홀수일 때 점 A_{n+1} 은 점 B_n 을 x축의 방향으로 1 만큼 평행이동시킨 점이고. n이 짝수일 때 점 A_{n+1} 은 점 B_n 을 y축의 방향으로 1만큼 평행이동시킨 점이다. 삼각형 $A_1A_1B_9$ 의 넓이는? [4.0점]

※ 공교육정상화법 근거

공교육정상화법의 교과별 적용을 위한 안내(수학) - 한국교육과정평가원

- (6) 교육과정 밖의 내용은 정규 수업 시간에 지도하였더라도 출제하여 평가할 수 없음
 - 정규 수업 시간에 지도한 내용이더라도 교육과정 밖의 내용은 출제할 수 없습니다. 이러한 내용은 문항 내에 단서 조건으로 명확히 제시하여도 출제하여 평가할 수 없습니다.
 - 용어와 기호 또한 교육과정의 학습 요소에서 제시한 범위를 벗어나는 내용은 출제하지 않아야 하며
 새로운 용어와 기호를 문제에서 정의하고 출제하는 것도 지양해야 합니다.
 - 사례 다음은 위반 사례에 해당함
 - 〈수학II〉수업 시간에 〈미적분〉에서 학습하는 역함수의 미분법의 개념을 좌표평면 상의 그래프의 대칭성을 이용하여 이해할 수 있도록 지도한 뒤 출제하여 평가함.
 - (수학Ⅱ)에서 정적분을 이용하여 회전체의 부피를 지도한 뒤 관련 문항을 출제하여 평가함.
 - 고등학교 〈수학〉에서 변환이라는 용어를 사용한 문항을 출제하여 평가함.

■ C 고등학교 - 12번 문항

선다형 12번 문항 (위반 유형 ③)	문항 분석
121 ≤ x ≤ 2 에서 함수 y = (x²-2x)²-4(x²-2x)+3의 최 댓값과 최솟값의 합은? [4.2점] ① 3 ② 4 ③ 5 ④ 6 ⑤ 7	◆ 합성함수의 최대,최소 합성함수를 치환하여 이차함수의 최대, 최소를 구 하는 문제로서 합성함수는 2학기에 배우는 내용이 며 좌표축의 변환은 대학 교육과정임.

■ C 고등학교 - 14번 문항

※ 문항 및 문항 분석

선다형 14번 문항 (위반 유형 ①)	문항 분석
14. x 에 대한 방정식 $x^2-2(a-3)x-(b^2-4b+k)=0$ 은 중근 $x=\alpha$ 를 가지고 $\alpha<0$ 이다. 실수 a , b 에 대하여 $2a-3b$ 의 최 솟값이 -10 이 되도록 하는 실수 k 의 값은? [4.4점]	• 판별식을 활용한 복잡한 방정식과 부등식 문제 교육과정 평가 방법 및 유의사항에는 판별식을 활용한 복잡한 방정식 문제는 다루지 않는다고 되어 있음. 특히 중근 조건으로 식을 세우면 a,b 좌표계가 설정되어 교육과정을 벗어남.

※ 교육과정 근거

2015 개정 교육과정 고등학교 <문자와 식> 평가 방법 및 유의 사항

• 판별식을 활용하는 복잡한 방정식과 부등식 문제는 다루지 않는다.

판별식을 활용하는 복잡한 방정식과 부등식 문제가 학생들에게 학습 부담을 줄 수 있다. 이에 따라 평가 유의 사항이 지정되었고, 아래와 같은 문제를 복잡한 유형으로 볼 수 있다.

■ C 고등학교 - 15번 문항

※ 문항 및 문항 분석

선다형 15번 문항 (위반 유형 ①)	문항 분석
 15. 좌표평면에서 점 A(1, 2)와 두 점 B, C에 대하여 AB= 15, AC= 15√2 이고, 삼각형 ABC의 무게중심의 좌표는 (4, 12)이다. 선분 BC의 길이가 √k 일 때, k의 값은? [4.6점] 	◆ 파포스의 중선정리는 교육과정을 벗어나 선행학습을 유발하는 내용임. 교육과정 평가 방법 및 유의사항에는 도형의 방정식은 도형을 좌표평면에서다룰수 있음을 이해하는 수준에서 다루도록 되어있는데 이 문항은 두 점사이의 거리를 구할 수있는 수준에서 벗어난 복잡한 문제임.

※ 공교육정상화법 근거

공교육정상화법의 교과별 적용을 위한 안내(수학) - 한국교육과정평가원

- (6) 교육과정 밖의 내용은 정규 수업 시간에 지도하였더라도 출제하여 평가할 수 없음
 - 정규 수업 시간에 지도한 내용이더라도 교육과정 밖의 내용은 출제할 수 없습니다. 이러한 내용은 문항 내에 단서 조건으로 명확히 제시하여도 출제하여 평가할 수 없습니다.
 - 용어와 기호 또한 교육과정의 학습 요소에서 제시한 범위를 벗어나는 내용은 출제하지 않아야 하며
 새로운 용어와 기호를 문제에서 정의하고 출제하는 것도 지양해야 합니다.

사례 다음은 위반 사례에 해당함

- 〈수학II〉수업 시간에 〈미적분〉에서 학습하는 역함수의 미분법의 개념을 좌표평면 상의 그래프의 대칭성을 이용하여 이해할 수 있도록 지도한 뒤 출제하여 평가함.
- (수학Ⅱ)에서 정적분을 이용하여 회전체의 부피를 지도한 뒤 관련 문항을 출제하여 평가함.
- 고등학교 〈수학〉에서 변환이라는 용어를 사용한 문항을 출제하여 평가함.

■ C 고등학교 - 16번 문항

※ 문항 및 문항 분석

선다형 16번 문항 (위반 유형 ①)	문항 분석
16. 원 $x^2+y^2+6x-4y-k=0$ 과 직선 $x-2y+1=0$ 이 서로 다른 두 점 P , Q에서 만난다. 원점 O 에 대하여 두 직선 OP , OQ 가 수직일 때, 상수 k 의 값은? $[4.7점]$	• 복잡한 근과 계수의 관계 도형의 방정식은 계산이 복잡한 문제는 다루지 않도록 되어 있는데 근과 계수와의 관계를 활용한 매우 복잡한 문제임.

※ 교육과정 근거

2015 개정 교육과정 고등학교 <문자와 식> 평가 방법 및 유의 사항

• 이차방정식의 근과 계수의 관계를 활용하는 복잡한 문제는 다루지 않는다.

2015 개정 수학과 교육과정에서는 학생들의 학습 부담 경감을 고려해 이차방정식의 근과 계수의 관계는 그 원리를 이해하는 수준에서 다루고 이를 활용하는 문제에서 복잡한 문제는 다루지 않도록 하고 있다.

■ C 고등학교 - 서술형 2번 문항

※ 문항 및 문항 분석

서술형 2번 문항 (위반 유형 ②)	문항 분석
서술형 2. 두 원 C_1 , C_2 의 방정식이 다음과 같다. 두 원의 중심을 각각 O_1 , O_2 , 두 원의 교점을 A, B라 할 때, 사각형 O_1O_2AB 의 넓이를 다음 질문에 답하여 구하시오.[11점, 부분 점수 있음]	
C₁: x²+y²-2x-8y+14=0, C₂: x²+y²-6x-6y+16=0 (1) 방정식 (x²+y²-2x-8y+14)+k(x²+y²-6x-6y+16)=0 이 두 원의 교점 A, B를 지나는 직선의 방정식이 되도록 하는 상수 k의 값과 그 직선의 방정식을 쓰시오. (2) 선분 AB의 길이의 값을 구하시오. (3) 선분 O₁O₂의 길이의 값을 구하시오. (4) 사각형 O₁O₂AB의 넓이의 값을 구하시오.	• 두 원의 교점을 지나는 직선의 방정식 두 원의 교점을 지나는 직선의 방정식은 교육과정 과 평가기준에 명시되지 않은 내용임.

※ 교육과정 근거

2015 개정 교육과정 고등학교 <기하> 평가 방법 및 유의 사항

2) 교수·학습 방법 및 유의 사항

기하 영역의 교수·학습 방법 및 유의 사항은 다음과 같다.

• 직선의 방정식과 원의 방정식은 중학교에서 학습한 내용과 연계하여 다룬다.

중학교에서 직선의 방정식은 일차함수와 일차방정식의 관계를 학습할 때 도입된다. 미지수가 2개인 일차방정식의 해가 무수히 많고 이 해를 좌표평면에 나타내면 직선이 되므로 일차방정식 ax+by+c=0이 직선의 방정식이라 설명한다. 그리고 b=0인 경우를 제외하고 직선의 방정식의 그래프는 일차함수의 그래프와 같다. 따라서 직선의 기울기 또한 일차함수의 관계를 포함하는 다양한 실생활의 예를 좌표평면에 직접 나타내게 하여 그 의미를 알 수 있도록지도해 왔다. 이를 기반으로 고등학교 <수학>에서는 직선의 방정식을 구하고 성질을 학습하게한다.

한편 중학교에서는 원에 대하여 원과 현의 성질, 접선에 관한 성질, 원주각의 성질 등을 다룬다. 고등학교 <수학>에서는 원을 방정식으로 나타냄으로써 좌표평면에서 다룰 수 있으며 중학교에서 학습한 성질을 재해석하게 할 수 있다.

4. D 고등학교

■ D 고등학교 - 1번 문항

※ 문항 및 문항 분석

선다형 4번 문항 (위반 유형 ①)	문항 분석
1. 점 $(2, 3)$ 를 $y = -2x + 1$ 에 대하여 대칭이동시킨 점을 (a, b) 라 할 때, $5(a+b)$ 의 값은? [3.7점] ① -11 ② -9 ③ -7 ④ -5 ⑤ -3	 ◆ 특정한 직선에 대한 대칭이동 y = -2x+1에 대하여 대칭이동을 묻는 문제로 교육과정 성취기준과 평가기준에 명시된 사항 을 벗어난 문제임.

※ 공교육정상화법 근거

공교육정상화법의 교과별 적용을 위한 안내(수학) - 한국교육과정평가원

- (3) 문항 출제 시 교육과정 문서에 제시된 교수·학습 방법 및 유의 사항, 평가 방법 및 유의 사항을 준수해야 함
- 교수·학습 방법 및 유의 사항을 숙지하여 내용 수준 및 범위를 준수합니다.
- 평가 방법 및 유의 사항을 숙지하고, 지나치게 복잡한 문제는 다루지 않아야 합니다.
 - 사례 다음은 위반 사례에 해당함
 - 2015 수학과 개정 교육과정의 성취기준에는 '[10수학02-09] 원점, x축, y축, 직선 y=x에 대한 대칭이동의 의미를 이해한다.'고 되어 있음에도 임의의 점 또는 임의의 직선 ax+by+c=0에 대한 대칭 문제를 출제하여 평가함.

■ D 고등학교 - 2번 문항

※ 문항 및 문항 분석

선다형 2번 문항 (위반 유형 ②)	문항 분석
 2. 두 점 A(1, 0), B(4, 3) 으로부터의 거리의 비가 1:2인 점 P의 자취의 길이는? [3.8점] ① 2√2π ② 3√2π ③ 4√2π ④ 5√2π ⑤ 6√2π 	◆ 아폴로니오스의 원 아폴로니오스의 원은 교육과정에 없는 대학 교육과정임.

※ 공교육정상화법 근거

공교육정상화법의 교과별 적용을 위한 안내(수학)

다. 평가 시 유의 사항

- (1) 평가 문항은 교육과정을 근거로 출제해야 함
 - 2015 개정 수학과 교육과정(교육부 고시 제2020-236호 [별책8])의 성격, 목표, 내용 체계 및 성취 기준, 교수·학습 및 평가의 방향을 준수하여야 합니다.
 - 교과서나 지도서의 내용도 교육과정 내의 내용인지 면밀히 확인하여야 합니다. 특히 교과서의 "탐구하기", "창의 융합 코너", "사고력 키우기" 등의 특별 코너 및 읽기 자료 등에 실려 있는 내용은 교육과정의 범위를 벗어나는 경우가 있으므로 주의해야 합니다. EBS를 포함한 시중의 교재나 교과서 출판사에서 제공하는 자료 등을 평가에 활용하는 경우에는 더욱 주의해야 합니다.

■ D 고등학교 - 4번 문항

※ 무항 및 무항 부석

선다형 4번 문항 (위반 유형 ②)	문항 분석
4. 서로 다른 세 직선 $ax+y+1=0, \ x+2y-3=0, \ 2x+3y-6=0 \ \text{에 의하여 좌표}$ 평면이 여섯 부분으로 나누어진다고 할 때, 만족하는 모든 상수 a 의 값의 곱은? [4.0점]	◆ 평면에서 세 직선의 위치 관계 평면에서 세 직선의 위치관계를 통해 영역을 나누는(분할)문제로서 교육과정에서 다루지 않 는 내용임.

■ D 고등학교 - 8번 문항

※ 문항 및 문항 분석

선다형 8번 문항 (위반 유형 ③)	문항 분석
8. $\left(\frac{\sqrt{2}}{1-i}\right)^n + \left(\frac{\sqrt{3}-i}{2}\right)^n = 2$ 를 만족하는 50이하 자연수 n 의 개수는? (단, $i=\sqrt{-1}$ 이다.) [4.3점]	◆ 복소수의 극형식 문제 복소수의 극형식문제에서 회전이동을 하면 쉽 게 해결되는 문제로서 대학 교육과정임.

※ 공교육정상화법 근거

공교육정상화법의 교과별 적용을 위한 안내(수학) - 한국교육과정평가원

- (6) 교육과정 밖의 내용은 정규 수업 시간에 지도하였더라도 출제하여 평가할 수 없음
 - 정규 수업 시간에 지도한 내용이더라도 교육과정 밖의 내용은 출제할 수 없습니다. 이러한 내용은 문항 내에 단서 조건으로 명확히 제시하여도 출제하여 평가할 수 없습니다.
 - 용어와 기호 또한 교육과정의 학습 요소에서 제시한 범위를 벗어나는 내용은 출제하지 않아야 하며
 새로운 용어와 기호를 문제에서 정의하고 출제하는 것도 지양해야 합니다.
 - 사례 다음은 위반 사례에 해당함
 - 〈수학II〉수업 시간에 〈미적분〉에서 학습하는 역함수의 미분법의 개념을 좌표평면 상의 그래프의 대칭성을 이용하여 이해할 수 있도록 지도한 뒤 출제하여 평가함.
 - 〈수학Ⅱ〉에서 정적분을 이용하여 회전체의 부피를 지도한 뒤 관련 문항을 출제하여 평가함.
 - 고등학교 〈수학〉에서 변환이라는 용어를 사용한 문항을 출제하여 평가함.

■ D 고등학교 - 9번 문항

※ 문항 및 문항 분석

선다형 9번 문항 (위반 유형 ①)	문항 분석
9. 이차방정식 $x^2+x+1=0$ 의 두 근 α , β 에 대하여 이차함수 $f(x)=x^2+px+q$ 가 $\beta f(\alpha^2)=-2$, $\alpha f(\beta^2)=-2$ 를 만족시킨다. 두 상수 p , q 에 대하여 $p+2q$ 의 값은? [4.4점]	

※ 교육과정 근거

2015 개정 교육과정 고등학교 <문자와 식> 평가 방법 및 유의 사항

• 이차방정식의 근과 계수의 관계를 활용하는 복잡한 문제는 다루지 않는다.

2015 개정 수학과 교육과정에서는 학생들의 학습 부담 경감을 고려해 이차방정식의 근과 계수의 관계는 그 원리를 이해하는 수준에서 다루고 이를 활용하는 문제에서 복잡한 문제는 다루지 않도록 하고 있다.

■ D 고등학교 - 11번 문항

선다형 11번 문항 (위반 유형 ②)	문항 분석
11. 이차부등식 -2x² +4ax-a-3<0 (-1≤x≤1)이 항상 성립하도록 하는 모든 정수 a의 값의 합은? [4.6점]	◆ 근의 분리 이차방정식과 부등식의 내용 중 근의 분리에 해당 하는 내용으로 평가기준에 명시되지 않은 내용임.

■ D 고등학교 - 15번 문항

15번 문항 (위반 유형 ③)	번 문항 (위반 유형 ③) 문항 분석	
15. 다음은 '피타고라스 음계'의 원리라고 한다. (가) 어떤 음을 내는 현의 길이를 1:1로 내분하는 지점을 누르고 퉁기면 처음 음보다 8도 높은 음, 즉 한 옥타브 올라간 음을 낸다. (나) 어떤 음을 내는 현의 길이를 2:1로 내분하는 지점을 누르고 퉁기면 처음 음보다 5도 높은 음을 낸다. 예를 들면, 전체 현의 길이를 1로 보고 퉁길 때의 음정을 '도'라 할 때, 길이가 ½이 되는 지점을 누르고 퉁기면 한 옥 타브 올라간 '높은 도' 음이 나고, 길이가 ½가 되는 지점을 누르고 퉁기면 '솔' 음이 난다. 위의 원리에 의해 전체 현의 길이를 1로 보고 퉁길 때의 음정을 '도'라 할 때, 한 옥타브 올라간 '높은 시'음을 내려면 현의 어느 지점을 누르고 퉁기면 되는가? [5.0점]	◆ 피타고라스 음계 수열의 귀납적 정의에 해당하는 문제로 대학 교육과정임.	

■ D 고등학교 - 서술형 1번 문항

※ 문항 및 문항 분석

서술형 1번 문항 (위반 유형 ②)	문항 분석
서답형 1. 두 직선 $4x-3y+3=0$, $3x+4y-1=0$ 이 이루는 각을 이등분하는 직선의 방정식을 모두 구하는 풀이과정과 답을 서술하시오. [5점]	◆ 각의 이등분선 각의 이등분선은 교육과정 성취기준과 평가기준에 없음.

※ 교육과정 근거

2015 개정 교육과정 고등학교 성취기준과 평가기준

(나) 직선의 방정식

교육과정 성취기준	평가준거 성취기준		평가기준
[10수학02-03] 직선의 방 정식을 구할 수 있다.	[10수학02-03-01] 다양한 직선의 방정식을 구할 수 있다.	상	ax + by + c = 0의 꼴로 나타낸 직선의 방정식을 이용하여 다양한 문제를 해결할 수 있다
		중	두 점을 지나는 직선의 방정식을 구할 수 있다
		하	한 점과 기울기가 주어진 직선의 방정식을 구힐 수 있다.
[10수학02-04] 두 직선의 평행 조건과 수직 조 건을 이해한다.	글 T띨 T スレレ゙	상	두 직선의 평행 조건을 이용하여 다양한 문제를 해결할 수 있다.
		8	주어진 직선에 평행한 직선의 방정식을 구할 수 있다.
		ēΙ	두 직선이 평행할 조건을 말할 수 있다.
	[10수학02-04-02]두 직선 의 수직 조건을 이해 하고, 주어진 직선에 수직인 직선의 방정식 을 구할 수 있다.	상	두 직선의 수직 조건을 이용하여 다양한 문제를 해결할 수 있다.
		중	주어진 직선에 수직인 직선의 방정식을 구할 수 있다
		ō	두 직선이 수직일 조건을 말할 수 있다.
사이의 거리를 구할		상	점과 직선 사이의 거리를 구하고, 그 과정을 설명할 수 있다.
		중	점과 직선 사이의 거리를 구할 수 있다.
수 있다.	할 수 있다.	ā	점과 직선 사이의 거리를 그림으로 표현할 수 있다

■ D 고등학교 - 서술형 4번 문항

※ 문항 및 문항 분석

서술형 1번 문항 (위반 유형 ②)	문항 분석
서답형 4. $\frac{\sqrt{x+3}}{\sqrt{x^2+x-30}} = -\sqrt{\frac{x+3}{x^2+x-30}}$ 를 만족시키는 정수 x 의 최댓값과 최솟값의 합을 구하는 풀이과정과 답을 서술하시오. [6점]	◆ 음수의 제곱근의 성질 복소수의 사칙연산과 음수의 제곱근의 교육과정에 명시되지 않은 내용임.

■ D 고등학교 - 서술형 6번 문항

서술형 1번 문항 (위반 유형 ②)	문항 분석
서답형 6. 두 이차함수 $f(x)$, $g(x)$ 가 다음 조건을 만족할 때.	◆ 복잡한 근과 계수의 관계, 부정방정식
(7) $f(x)g(x)=(x^2-4)(x^2-16)$	근과 계수의 관계가 복잡하고 부정방정식을
(4) $f(\alpha)=f(\alpha+2)=0$ 인 양의 실수 α 가 존재한다.	이용해야 하는데 이는 교육과정 성취기준에
x에 대한 방정식 $f(x)-g(x)=0$ 이 서로 다른 자연수 m,n 을 근으로 가질 때, $m+n$ 의 값을 구하는 풀이과정과 답을 서술하시오. (4)	명시된 내용을 벗어남.

5. E 고등학교

■ E 고등학교 - 10번 문항

※ 문항 및 문항 분석

선다형 10번 문항 (위반 유형 ①)	문항 분석
 10. 두 원 (x+3)²+(y+1)²=1, (x-5)²+(y-3)²=1 이 직선 y=mx+n에 대하여 서로 대칭일 때, m+n 의 값은? [3.7점] 	 ◆ 일반 직선에 대한 대칭이동 교육과정의 대칭이동은 x축, y축, 원점, y=x에 대한 대칭이동만 다루지만 이 문항은 일반 직선 y=mx+n에 대한 대칭이동을 평가하고 있음.

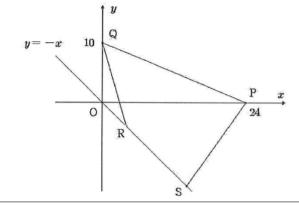
※ 문항정보표

10 대칭이동	원점, x축, y축, 직선 y=x에 대한 대칭이동의 의미를 이해한다.
---------	---

■ E 고등학교 - 20번 문항

※ 문항 및 문항 분석

선다형 20번 문항 (위반 유형 ②)	문항 분석
20 . 4개의 실수 a_1 , a_2 , a_3 , a_4 가 다음 조건을 만족한다.	
(가) $a_1+a_2+a_3+a_4=20$ (나) $a_1,\ a_2,\ a_3,\ a_4$ 중 임의의 두 수 $a_i,\ a_j$ (단, $i\neq j$) 에 대하여 $a_i+a_j\leq 10$ 이면 a_i+a_j 는 짝수	◆ 미지수가 4개인 연립일차부등식 연립일차부등식은 미지수가 1개인 것을 다루는 것이 교육 과정인데, 이 문항은 미지수가 총 4개가 있음.
$0 \leq a_1 < a_2 < a_3 < a_4$ 가 되는 순서쌍 $\left(a_1,\ a_2,\ a_3,\ a_4\right)$ 의 개수는? $[4.8 ext{점}]$	


※ 문항정보표

20 일차부등식	미지수가 1개인 연립일차부등식을 풀 수 있다.
----------	------------------------------

■ E 고등학교 - 21번 문항

※ 문항 및 문항 분석

21번 문항 (위반 유형 ①)	
21. 좌표평면 위에 두 점 P(24, 0), Q(0, 10)가 있다.	
길이가 $10\sqrt{2}$ 인 선분 RS가 반직선 $y=-x(x\geq -10)$	
위에서 움직일 때, 사각형 PQRS의 둘레의 길이의 최솟	
값은? [4.9점]	
† y	•
	_

◆ *y* =-*x*에 대한 대칭이동

교육과정의 대칭이동은 x축, y축, 원점, y=x에 대한 대칭이동만 다루지만 이 문항은 직선 y=-x에 대한 대칭이동을 평가하고 있음.

문항 분석

※ 문항정보표

21	평행이동과 대칭이동	평행이동의 의미를 이해한다. 원점, x축, y축, 직선 y=x에 대한 대칭이동의 의미를 이해한다.
----	------------	--

■ E 고등학교 - 서답형 2번 문항

※ 문항 및 문항 분석

서답형 2번 문항 (위반 유형 ②)	문항 분석
서답형 2번 아래 그림과 같이 한 변의 길이가 1인 정사각형의 한 꼭짓점 A 에서 점 P로 빛을 발사했다. 발사된 빛은 꼭짓점 A, B, C, D중 어느 한 점에 도달하면 더 이상 진행되지 않는다. A에서 발사된 빛이 어느 한 꼭짓점에 도달할 때까지의 진행거리와 반사 횟수를 각각 구하시오. (단, 입사각과 반사각의 크기는 같다.) [7점] D C P 3 4/4 A 1	◆ 굴절반사 굴절반사에 대한 원리를 이해해야 해결 가능한 문제인데 굴절반사는 교육과정에 없는 내용임.

※ 문항정보표

2 대칭이동	원점, x축, y축, 직선 y=x에 대한 대칭이동의 의미를 이해한다.
--------	---

F 고등학교

■ F 고등학교 - 6번 문항

※ 문항 및 문항 분석

선다형 6번 문항 (위반 유형 ③)	문항 분석
6. 좌표평면 위의 두 점 A(-4,0), B(2,2)를 이은 선분 AB의 중점 M에서 거리가 4인 곳에 위치한 점 P에 대하여 $\overline{AP}^2 + \overline{BP}^2$ 의 값은? [4.1점]	◆ 파포스의 중선정리 파포스의 중선정리는 교육과정을 벗어나 대학 교 육과정임.

■ F 고등학교 - 11번 문항

※ 문항 및 문항 분석

선다형 11번 문항 (위반 유형 ③)	문항 분석
11. 거리가 30km 떨어진 두 가구점 A, B에서 가구를 구매하고 배송 서비스를 받는데, 1km 당 배송 비용은 A가구점이 B가구점보다 2배 비싸다고 한다. 두 가구점으로부터 배송 비용이 동일한 임의의 지점 P에 대하여삼각형 PAB의 넓이의 최댓값은? [4.6점]	◆ 아폴로니오스의 원 아폴로니오스의 원은 자취문제로 대학 교육과정임. ◆ 문항정보표와 다른 문제 문항정보표에는 원과 직선 사이의 위치관계를이해한다고 나와 있음.

※ 문항정보표

400	-990,000,000,000,000,000,000,000,000	110~802-071	
11	원과 직선의 위치관계 이해하기	좌표평면에서 원과 직선의 위치 관계를 이해한다.	

■ F 고등학교 - 13번 문항

선다형 13번 문항 (위반 유형 ③)	문항 분석
 13. 점 P(3, -4)를 지나는 직선이 원 x²+y²-2x-8y-10=0과 두 점 Q, R에서 만나고 PQ=3QR을 만족시킬 때 선분 PQ의 길이는? (단, 점 Q가 점 R보다 점 P에 더 가깝다.) [5.1점] 	◆ 원과 비례 원의 할선 사이의 길이의 비를 이용한 문제로서 교육 과정에서 삭제된 내용임.

■ F 고등학교 - 14번 문항

*	문항	민	무하	부석
/•\	11. 0	_	1 0	1.

* 한영 및 한영 한식 	
선다형 14번 문항 (위반 유형 ③)	문항 분석
 14. 좌표평면 위의 세 점 A, B, C가 다음 조건을 만족시킨다. ○ 두 점 A, B의 좌표는 A(a,0), B(0,4) 이고, a는 음수이다. ○ 삼각형 ABC는 정삼각형이다. ○ 점 C의 x 좌표는 양수이다. ○ 중심이 A인 원이 y축과 서로 다른 두 점 B, P에서 만난다. 선분 OC의 길이가 최소가 될 때 선분 CP의 길이는? (단, a는 상수이다.) [5.2점] 	◆ 산술, 기하 평균 산술평균과 기하평균을 이용한 최대, 최소 문제는 절 대부등식의 성취기준에 명시되지 않는 내용임.

■ F 고등학교 - 서술형 3번 문항

서술형 3번 문항 (위반 유형 ①)	문항 분석
3 0 0 0	८० सन
[서술형 3]	
세 직선	◆ 각의 이등분선
x+y-2=0 , $x-2y+4=0$, $2x-y-4=0$ 이 이루는	각의 이등분선은 교육과정에 명시되지 않는
삼각형의 내심의 좌표를 구하고 그 풀이과정을 서술하시오.	내용임.
[8.0점]	
1222	

6. G 고등학교

■ G 고등학교 - 1번 문항

※ 문항 및 문항 분석

선다형 1번 문항 (위반 유형 ③)	문항 분석
1. 자연수 n 에 대하여 이차함수 $y = 2x^2$ 의 그래프와 직선 $y = nx$ 의 교점 중 원점이 아닌 점을 A, 이차함수 $y = 2x^2$ 의 그래프와 직선 $y = (n+2)x$ 의 교점 중 원점이 아닌 점을 B라고 한다. 삼각형 OAB의 넓이를 $S(n)$ 이라 할 때, $S(n) > 100$ 을 만족시키는 n 의 최솟값을 구하면? (단, O는 원점이다.) [4.3점]	◆ 세 점의 좌표를 이용해 삼각형의 넓이 사선공식을 이용하여 삼각형의 넓이를 구하는 문제로 대학 교육과정임.

■ G 고등학교 - 2번 문항

※ 문항 및 문항 분석

선다형 2번 문항 (위반 유형 ②)	문항 분석
2. 이차항의 계수가 1인 이차함수 $y = f(x)$ 와 직선 $y = g(x)$ 는 두 점 $(\alpha,0)$, $(\beta,8)$ 에서 만나고, 두 점 $(\alpha,0)$, $(\beta,8)$ 의 중점에서 x 축에 수직으로 내린 직선이 이차함수 $y = f(x)$ 와 x 축에서 만난다. 이 때, $g\left(\frac{3}{2}\alpha - \frac{1}{2}\beta\right)$ 의 값을 구하면? (단, $\alpha < \beta$ 이다.) [5.5점]	• 함수와 관련하여 지나치게 복잡한 활용문제 평가방법 및 유의사항에 함수와 관련하여 지나치게 복잡한 활용문제는 다루지 않기로 했는데 이 문제는 외분을 이용해 지나치게 복잡한 계산과정을 묻고 있음.

※ 교육과정 근거

______ 2015 개정 교육과정 고등학교 <함수의 그래프> 평가 방법 및 유의 사항

- 3) 평가 방법 및 유의 사항
 - 함수의 그래프와 그 성질에 대한 이해를 평가할 때, 지나치게 복잡한 문제는 다루지 않는다.

2015 개정 수학과 교육과정에서는 학습 부담 경감을 위해 함수의 그래프와 그 성질을 이해 하고 있는지를 평가할 수 있을 정도만 다루고 지나치게 복잡한 문제는 다루지 않도록 하고 있 다.

■ G 고등학교 - 5번 문항

※ 문항 및 문항 분석

선다형 5번 문항 (위반 유형 ①)	문항 분석
5. 연립방정식 $\begin{cases} 2x^2+y^2-3xy-2x+y=0 \\ x^2-xy+y^2=3 \end{cases}$ 을 만족시키는 두 실수 x , y 에 대하여 $2x+y$ 의 최댓값을 구하면? [4.1점]	◆ 연립이차방정식 교수학습방법 및 유의사항에 보면 미지수가 2개인 연립이차방정식은 이차식이 간단히 인수분해가 되는 경우만 다룬다고 했는데 복잡한 인수분해를 출제했음.

■ G 고등학교 - 12번 문항

※ 문항 및 문항 분석

선다형 12번 문항 (위반 유형 ②)	문항 분석
12. 아래 그림과 같이 좌표평면 네 점 O(0,0), A(18,0),	
B(18,18), C(0,18)을 꼭짓점으로 하는 정사각형 OABC	
에 대하여 점 $(9,9)$ 를 지나고 x 축과 만나는 세 직선	
l, m , n 이 정사각형 OABC의 넓이를 6등분한다. 직선 l	
의 x 절편을 a 라 하고 $5 \le a \le 11$ 일 때, 두 직선 m 과 n 의	
기울기의 곱의 최댓값은 α , 최솟값은 β 이다. $\alpha + \beta$ 의 값을	
구하면? [5.1점]	◆ 정사각형 넓이 6등분
	정사각형의 넓이의 6등분을 공식화시키는 것은
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	교육과정에 존재하지 않음.

■ G 고등학교 - 14번 문항

선다형 14번 문항 (위반 유형 ②)	문항 분석
14. 세 직선 $x+y-4=0$, $2x-y+1=0$, $kx-y+2=0$ 이 삼각형을 이루지 않도록 하는 모든 실수 k 값의 개수를 a , 모든 실수 k 값의 합을 b , 모든 실수 k 값의 곱을 c 라 할 때, $a+b+c$ 의 값을 구하면? [4.2점]	◆ 평면에서 세 직선의 위치관계 평면에서 세 직선의 위치관계는 교육과정에 없는 내용임,

7. H 고등학교

■ H 고등학교 - 1번 문항

※ 문항 및 문항 분석

선다형 1번 문항 (위반 유형 ②)	문항 분석
$1.$ 연립방정식 $\begin{cases} x^2-y^2=6 \\ (x+y)^2-2(x+y)=3 \end{cases}$ 을 만족시키는 양수 $x,\ y$ 에 대하여 $12xy$ 의 값온? $[5.1점]$	◆ 미지수가 2개인 연립이차방정식 교수학습방법 및 유의사항에 보면 미지수가 2개인 연립이차방정식은 이차식이 간단히 인수분해가 되는 경우만 다룬다고 했는데 복잡한 인수분해를 다루었음.

※ 교육과정 근거

2015 개정 교육과정 고등학교 <문자와 식> 교수학습방법 및 유의 사항

 미지수가 2개인 연립이차방정식은 일차식과 이차식이 각각 한 개씩 주어진 경우, 두 이차식 중 한 이차식이 간단히 인수분해 되는 경우만 다룬다.

2009 개정 수학과 교육과정에 포함되어 있었던 미지수가 2개인 연립이차방정식의 학습 내용에는 $\begin{cases} x^2 + 3xy + y^2 = 1 \\ x^2 + 4xy + 5y^2 = 2 \end{cases}$ 와 같이 두 이차식이 모두 인수분해가 되지 않는 경우에 대해서도 다루었다. 하지만 학습 부담 경감 차원에서 2015 개정 수학과 교육과정에서는 복잡한 연립이 차방정식을 다루지 않도록 위와 같은 조건이 제시되었다.

■ H 고등학교 - 4번 문항

※ 문항 및 문항 분석

선다형 4번 문항 (위반 유형 ②)	문항 분석
4. x 에 대한 이차방정식 $x^2-6x+k-3=0$ 의 두 근이 1 보다 클 때, 정수 k 의 값의 합은? $[5.4점]$	◆ 근의 분리 이차방정식의 근의 위치 문제는 교육과정에서 삭제되었음.

■ H 고등학교 - 6번 문항

선다형 6번 문항 (위반 유형 ①)	문항 분석
6. 두 점 A(-2, 0), B(4, 0)과 직선 $x+5y-27=0$ 위를 움직이는 점 P에 대하여 $\overline{AP^2}+\overline{BP^2}$ 의 최솟값은? [5.6점]	◆ 파포스의 정리 이 문항은 파포스의 중선정리와 점과 직선사이의 거리 를 이용하면 쉽게 풀리는 문제로 교육과정을 벗어나 대 학 교육과정임.

■ H 고등학교 - 10번 문항

※ 문항 및 문항 분석

* 18 × 18 17		
선다형 10번 문학	항 (위반 유형 ②)	문항 분석
10. 이차함수 $y = f(x)$ 의 그래 (-2, 0), (4, 0), (0, -8)을 서로 다른 실근의 개수를 $h(7) + h(8) + h(9) + \cdots + h(20)$	지난다. 방정식 $f(x)+k=0$ 의 (k) 라 할 때.	
① 7 ② 8 ③ 9 ④ 10 ⑤ 11	$ \begin{array}{c c} & y \\ \hline -2 & 0 \\ \hline -8 & x \end{array} $	 ◆ f(x) = 0 함수방정식 f(x) = 0은 교육과정 성취기준에 명시되지 않는 내용임.

■ H 고등학교 - 12번 문항

※ 문항 및 문항 분석

선다형 12번 문항 (위반 유형 ③)	문항 분석
12. 세 점 A(2, 4), B(1,1), C(3, 2)를 꼭짓점으로 하는 삼각형 ABC를 세 점 A'(5, -1), B'(2, 0), C'(3, -2)을 꼭짓점으로 하는 삼각형 A'B'C'으로 이동한다. 이 이동에 의하여 도형 $f(x,y)=0$ 은 어떤 도형으로 옮겨지는가? [6.5점] ① $f(x+3,y-5)=0$ ② $f(-x+7,y-5)=0$ ③ $f(-y+3,-x+1)=0$ ④ $f(y+1,x-3)=0$ ⑤ $f(-y+1,x-1)=0$	 ◆ f(-y+3, -x+1)=0, y=-x대칭 음함수의 표현으로 평행이동과 대칭이동을 복합적으로 사용하여 합성변환을 유도하고 있으며 y=-x 대칭을 기반으로 하고 있음.

■ H 고등학교 - 단답형 2번 문항

단답형 2번 문항 (위반 유형 ②)	문항 분석
좌표평면 위의 세 점 A(0, 1), B(4, 3), C(-2, 6)를 꼭짓점으로 하는 삼각형 ABC가 있다. \angle B의 이동분선이 변 AC과 만나는 점을 D이라고 하자. $\overline{\text{CD}}=a$, $\overline{\text{AD}}=b$ 일 때, $\frac{b}{a}$ 의 값을 구하여라. [4점]	◆ 각의 이등분선의 비율에 관한 성질 각의 이등분선의 비율에 관한 성질은 교육과정에 명시 되지 않는 내용임.

8. I 고등학교

■ I 고등학교 - 18번 문항

※ 무하 및 무하 부선

선다형 18번 문항 (위반 유형 ②)	문항 분석
18. 원 $x^2+y^2=1$ 위를 움직이는 점 P 와 두 점 $A(-2,2)$, $B(4,2)$ 에 대하여 $\overline{PA}^2+\overline{PB}^2$ 의 최솟값은?	◆ 파포스의 정리 파포스의 중선정리는 교육과정을 벗어나 대 학 교육과정임.

■ I 고등학교 - 19번 문항

※ 문항 및 문항 분석

~ E 0 X E 0 E	
선다형 19번 문항 (위반 유형 ①)	문항 분석
19. 원 $(x+2)^2 + (y+2)^2 = 16$ 을 x 축의 방향으로 -1 만	◆ y =-x에 대한 대칭이동
큼 평행이동한 후, 직선 $y = -x$ 에 대하여 대칭이동	교육과정의 대칭이동은 x 축, y 축, 원점,
한 원이 x 축과 만나는 두 교점을 ${\sf P}$, ${\sf Q}$ 라고 할 때, 선	y = x에 대한 대칭이동만 다루지만 이 문항
분 PQ 의 길이는?	은 직선 $y=-x$ 에 대한 대칭이동을 평가하고
[4.5점]	있음.

■ I 고등학교 - 21번 문항

선다형 21번 문항 (위반 유형 ①)	문항 분석
21. 두 양수 a,b에 대하여 부등식 $ x-a + x-b < b = $ 만족하는 정수 x 의 개수를 $n(a,b)$ 로 정의할 때, 보기 중 옳은 것만을 있는 대로 고른 것은? (단, $a < b$) \neg , $n(2,3)=2$ \neg , $n(2k,2k+4)=2k+3$ (단, k 는 자연수) \neg , $n(2k,2k+2)=2\cdot n(k,k+1)$ (단, k 는 자연수) [4.6점] ① \neg ② \neg ③ \neg , \neg ② \neg ③ \neg , \neg ④ \neg 0 \neg	◆ $n(2k, 2k+4)$ 의 표현 n(a, b)의 표현은 교육과정에서 다루고 있지 않음

■ I 고등학교 - 22번 문항

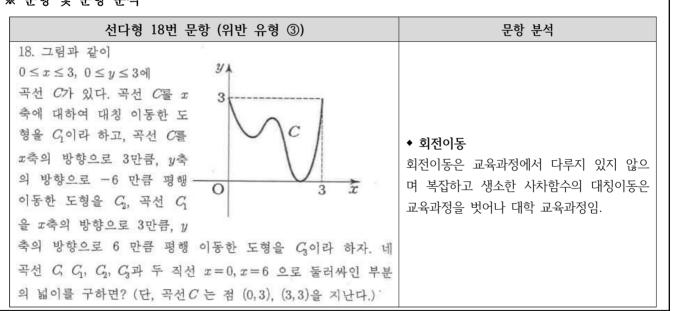
※ 문항 및 문항 분석

선다형 22번 문항 (위반 유형 ①)	문항 분석
22. 포물선 $y=x^2+2x+3$ 위의 서로 다른 두 점 A,B 가 직선 $y=-x+4$ 에 대하여 대칭일 때, 두 점 A,B 의 x 좌표의 곱은?	 ◆ y = -x + 4에 대한 대칭이동 교육과정의 대칭이동은 x축, y축, 원점, y=x에 대한 대칭이동만 다루지만 이 문항 은 직선 y = -x + 4에 대한 대칭이동을 평가하고 있음.

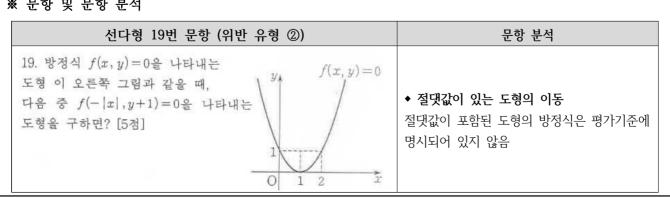
■ I 고등학교 - 23번 문항

선다형 23번	문항 (위반 유형 ②)	문항 분석
23. 아래 그림은 도형 $f(x,y) = 0$ 이 나타내는 부분이다.		
이때 $f(y,x-2)=0$ 이 나타내는 도형과		
	나타내는 도형에서 겹쳐지는 부	
분의 넓이는?	[4.8점]	
y	↑	$ \bullet \ f(-x, y-2) = 0 $
		교육과정의 대칭이동은 x 축, y 축, 원점, $y = x$ 에 대한 대칭이동만 다루지만 이 문항은 그 범위를
		넘어서고 있음.
2	/2 x	
-2	/ 2 "	
	_2	
	1-2	

9. J 고등학교


■ J고등학교 - 17번 문항

※ 무항 및 무항 부석


선다형 17번 문항 (위반 유형 ①)	문항 분석
17. 두 점 A(1, 4), B(2, 1)과 직선 $y=-x$ 위의 점 Q에 대하여 $\overline{AQ}+\overline{BQ}$ 의 최솟값을 구하면? [4.7점]	 ◆ y = -x에 대한 대칭이동 교육과정의 대칭이동은 x축, y축, 원점, y=x에 대한 대칭이동만 다루지만 이 문항은 직선 y=-x에 대한 대칭이동을 평가하고있음.

■ J 고등학교 - 18번 문항

※ 문항 및 문항 분석

■ J 고등학교 - 19번 문항

■ J 고등학교 - 21번 문항

※ 문항 및 문항 분석

※ 눈앙 및 눈앙 분식	
선다형 21번 문항 (위반 유형 ①)	문항 분석
21. 그림과 같이 좌표평면 위의 두 원 $x^2 + y^2 = 4$, $(x-13)^2 + y^2 = 9$ 와 직선 l 이 각각 점 P, Q에서 접할 때 공통인 접선 PQ의 길이를 구하면? [5.2점]	◆ 두 원의 위치관계 두 원의 위치관계를 교육과정에 없는 내용이
$x^{2}+y^{2}=4$ P $(x-13)^{2}+y^{2}=9$	며 공통내접선은 교육과정에서 삭제되었음.

■ J 고등학교 - 22번 문항

선다형 22번 문항 (위반 유형 ①)	문항 분석
	◆ $x+y-1=0$ 대칭이동
22. 직선 $x-2y+1=0$ 을 직선 $x+y-1=0$ 에 대하여 대칭 이동	교육과정의 대칭이동은 x 축, y 축, 원점,
한 직선의 방정식이 $ax+by+c=0$ 일 때 $a+b+c$ 의 값을 구하	y=x에 대한 대칭이동만 다루지만 이 문항
면? [5.5점]	은 직선 $x+y-1=0$ 에 대한 대칭이동을 평
	가함.

추가자료 : 유형별 교육과정 미준수 문제

$1. \omega$ 의 성질

A 고등학교 단답형 2번	B 고등학교 선다형 11번
삼차방정식 $x^3=1$ 의 한 허근을 ω 라고 하자. n 이 100이하의 자연수일 때, $(-\omega-1)^{2n} \times \omega^{4n}$ 의 값이 실수가 되도록 하는 n 의 개수를 구하시오. [5점]	삼차방정식 $x^3=-1$ 의 한 허근을 ω 라 할 때, $\overline{\omega}+\overline{\omega}^2+\overline{\omega}^3+\dots+\overline{\omega}^n=0$ 을 만족하는 100 이하의 자연수 n 의 개수는? (단, $\overline{\omega}$ 는 ω 의 켤레복소수이다.) [3.5점]
C 고등학교 선다형 2번	D 고등학교 선다형 9번
2. 삼차방정식 $x^3=1$ 의 한 허근을 ω 라 할 때, $1+\omega+\omega^2+\omega^3+\cdots+\omega^{2021}$ 의 값은? [3.1점]	9. 이차방정식 $x^2+x+1=0$ 의 두 근 α , β 에 대하여 이차함수 $f(x)=x^2+px+q$ 가 $\beta f(\alpha^2)=-2$, $\alpha f(\beta^2)=-2$ 를 만족시킨다. 두 상수 p , q 에 대하여 $p+2q$ 의 값은? [4.4점]

2. 각의 이등분선

D 고등학교 서술형 1번	F 고등학교 서술형 3번
서답형 1. 두 직선 $4x-3y+3=0$, $3x+4y-1=0$ 이 이루는 각을 이동분하는 직선의 방정식을 모두 구하는 풀이과정과 답을 서술하시오. [5점]	[서술형 3] 세 직선 $x+y-2=0$, $x-2y+4=0$, $2x-y-4=0$ 이 이루는 삼각형의 내심의 좌표를 구하고 그 풀이과정을 서술하시오. [8.0점]
H 고등학교 서술형 2번	
좌표평면 위의 세 점 A(0, 1), B(4, 3), C(-2, 6)를 꼭짓점으로 하는 삼각형 ABC가 있다. ∠B의 이등분선이 변 AC과 만나	
는 점을 D이라고 하자. $\overline{CD}=a$, $\overline{AD}=b$ 일 때, $\frac{b}{a}$ 의 값을 구하	
여라. [4점]	

3. x축, y축, 원점, y = x이외의 대칭이동

D 그드립그 리디션 1메	F 그드하고 기리된 61메
D 고등학교 단답형 1번	E 고등학교 선다형 21번
1. 점 $(2, 3)$ 를 $y = -2x+1$ 에 대하여 대칭이동시킨 점을	21. 좌표평면 위에 두 점 P(24, 0), Q(0, 10)가 있다.
(a, b) 라 할 때, 5(a+b) 의 값은? [3.7점]	길이가 $10\sqrt{2}$ 인 선분 RS가 반직선 $y=-x(x\geq -10)$
① -11 ② -9 ③ -7 ④ -5 ⑤ -3	위에서 움직일 때, 사각형 PQRS의 둘레의 길이의 최솟
	값은? [4.9점]
	† ^y
	y=-x 10 Q
	P x
	R
	<u> </u>
	s×
H 고등학교 선다형 12번	I 고등학교 선다형 19번
12. 세 점 A(2, 4), B(1,1), C(3, 2)를 꼭짓점으로 하는 삼각형	19. 원 $(x+2)^2 + (y+2)^2 = 16$ 을 <i>x</i> 축의 방향으로 -1 만
ABC를 세 점 A'(5, −1), B'(2, 0), C'(3, −2)을 꼭짓점으로	큼 평행이동한 후, 직선 $y = -x$ 에 대하여 대칭이동
하는 삼각형 A'B'C'으로 이동한다. 이 이동에 의하여 도형	한 원이 x 축과 만나는 두 교점을 P , Q 라고 할 때, 선
f(x,y) = 0 온 어떤 도형으로 옮겨지는가? [6.5점]	분 PQ 의 길이는?
	[4.5점]
② $f(-x+7, y-5) = 0$	
(3) f(-y+3, -x+1) = 0	
(5) $f(-y+1,x-1)=0$	
I 고등학교 선다형 22번	J 고등학교 선다형 17번
22. 포물선 $y = x^2 + 2x + 3$ 위의 서로 다른 두 점 A,B	17. 두 점 A(1, 4), B(2, 1)과 직선 y=-x 위의 점 Q에 대하여
가 직선 $y=-x+4$ 에 대하여 대칭일 때, 두 점 A,B의	
x좌표의 곱은?	g reservant Lieberg 18 (CC Alders (1990) 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 -
[4.7점]	
J 고등학교 선다형 22번	
22. 직선 $x-2y+1=0$ 을 직선 $x+y-1=0$ 에 대하여 대칭 이동	
한 직선의 방정식이 $ax+by+c=0$ 일 때 $a+b+c$ 의 값을 구하면? [5.5점]	
C. [0.0 B]	

4. 아폴로니오스의 원

D 고등학교 단답형 2번	F 고등학교 선다형 11번
 2. 두 점 A(1, 0), B(4, 3) 으로부터의 거리의 비가 1:2인 점 P 의 자취의 길이는? [3.8점] ① 2√2π ② 3√2π ③ 4√2π ④ 5√2π ⑤ 6√2π 	11. 거리가 30km 떨어진 두 가구점 A, B에서 가구를 구매하고 배송 서비스를 받는데, 1km 당 배송 비용은 A가구점이 B가구점보다 2배 비싸다고 한다. 두 가구점 으로부터 배송 비용이 동일한 임의의 지점 P에 대하여 삼각형 PAB의 넓이의 최댓값은? [4.6점]

5. 파포스의 정리(중선정리)

C 고등학교 단답형 15번	F 고등학교 선다형 6번
 15. 좌표평면에서 점 A(1, 2)와 두 점 B, C에 대하여 AB= 15, AC= 15√2 이고, 삼각형 ABC의 무게중심의 좌표는 (4, 12)이다. 선분 BC의 길이가 √k 일 때, k의 값은? [4.6점] 	 6. 좌표평면 위의 두 점 A(-4,0), B(2,2)를 이은 선분 AB의 중점 M에서 거리가 4인 곳에 위치한 점 P에 대하여 AP²+BP²의 값은? [4.1점]
H 고등학교 선다형 6번	I 고등학교 선다형 18번
6. 두 점 A(-2, 0), B(4, 0)과 직선 $x+5y-27=0$ 위를 움직이는 점 P에 대하여 AP^2+BP^2 의 최솟값은? [5.6점]	18. 원 $x^2 + y^2 = 1$ 위를 움직이는 점 P와 두 점 A(-2,2), B(4,2) 에 대하여 $\overline{PA}^2 + \overline{PB}^2$ 의 최솟값은?

선행학습 유발문제

C 고등학교 선다형 10번
10. 좌표평면에서 자연수 n 에 대하여 점 A_n 과 점 B_n 을 다음과 같이 정하자.
(7) A ₁ (1, 1)
 (나) 점 B,,은 점 A,을 직선 y=x에 대하여 대칭이동시킨 점이다. (다) n이 홀수일 때 점 A,+1은 점 B,을 x축의 방향으로 1 만큼 평행이동시킨 점이고. n이 짝수일 때 점 A,+1은
점 B_n 을 y 축의 방향으로 1 만큼 평행이동시킨 점이다.
삼각형 $A_{11}A_{1}B_{9}$ 의 넓이는? $[4.0점]$ 아래 첨자에 n 이 들어가는 표현은 고등학교 2 학년에 배우는 수학1의 수열에서 처음으로 사용함
I 고등학교 선다형 21번
21. 두 양수 a.b에 대하여 부등식 $ x-a + x-b < b$ 를 만족하는 정수 x 의 개수를 $n(a,b)$ 로 정의할 때, 보기중 옳은 것만을 있는 대로 고른 것은? (단, $a < b$)

6. 교육과정 평가 방법 및 유의사항, 교수・학습 방법 및 유의 사항 미준수

C 고등학교 단답형 14번	C 고등학교 선다형 16번
14. x 에 대한 방정식 $x^2-2(a-3)x-(b^2-4b+k)=0$ 은 중근 $x=\alpha$ 를 가지고 $\alpha<0$ 이다. 실수 a , b 에 대하여 $2a-3b$ 의 최 솟값이 -10 이 되도록 하는 실수 k 의 값은? [4.4점]	16. 원 $x^2+y^2+6x-4y-k=0$ 과 직선 $x-2y+1=0$ 이 서로 다른 두 점 P,Q에서 만난다. 원점 O에 대하여 두 직선 OP,OQ가 수직일 때, 상수 k 의 값은? [4.7점]
교육과정 평가 방법 및 유의사항에는 판별식을 활용한 복잡한 방 정식 문제는 다루지 않는다고 되어 있음.	교육과정 평가 방법 및 유의사항에는 도형의 방정식은 계산이 복 잡한 문제는 다루지 않도록 되어 있는데 근과 계수와의 관계를 활용한 매우 복잡한 문제임.
G 고등학교 선다형 2번	G 고등학교 선다형 5번
2. 이차항의 계수가 1인 이차함수 $y=f(x)$ 와 직선 $y=g(x)$ 는 두 점 $(\alpha,0)$, $(\beta,8)$ 에서 만나고, 두 점 $(\alpha,0)$, $(\beta,8)$ 의 중점에서 x 축에 수직으로 내린 직선이 이차함수 $y=f(x)$ 와 x 축에서 만난다. 이 때, $g\Big(\frac{3}{2}\alpha-\frac{1}{2}\beta\Big)$ 의 값을 구하면? (단, $\alpha<\beta$ 이다.) [5.5점] 평가방법 및 유의사항에 함수와 관련하여 지나치게 복잡한 활용 문제는 다루지 않기로 했는데 이 문제는 외분을 이용해 지나치게 복잡한 계산과정을 묻고 있음.	5. 연립방정식 $\begin{cases} 2x^2+y^2-3xy-2x+y=0 \\ x^2-xy+y^2=3 \end{cases}$ 을 만족시키는 두 실수 x , y 에 대하여 $2x+y$ 의 최댓값을 구하면? [4.1점] 교수학습방법 및 유의사항에 보면 미지수가 2개인 연립이차방정식은 이차식이 간단히 인수분해가 되는 경우만 다룬다고 했는데 복잡한 인수분해를 출제했음.